Differentiation of rat iPS cells and ES cells into granulosa cell-like cells in vitro.

نویسندگان

  • Juan Zhang
  • Hui Li
  • Zhao Wu
  • Xiaojun Tan
  • Fengying Liu
  • Xianghong Huang
  • Xiaoling Fang
چکیده

Premature ovarian failure (POF) is an ovarian defect characterized by the premature depletion of ovarian follicles before 40 years of age, representing one major cause of female infertility. Stem cells provide the possibility of a potential treatment for POF. In this study, rat embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) were co-cultured with granulosa cells (GCs) to differentiate to GC-like cells. The level of estradiol (E2) analyzed by radioimmunoassay showed that the E2 concentration of the culture supernatant of co-cultured rat iPSCs and ESCs increased in a time-dependent manner, compared with the GCs group that has an opposite trend. The expression of follicle-stimulating hormone receptor (FSHR) was confirmed by immunostaining. These results indicated that rat iPSCs and ESCs were effectively induced to GC-like cells through indirect cell-to-cell contact. Real-time polymerase chain reaction was performed to analyze the expression level of marker genes in POF, including BMP15, FMR1, FSHR, INHA, AMH, NOBOX, FOXO3, EIF2B, FIGLA, and GDF9. The BMP15, FSHR, INHA, AMH, NOBOX, and GDF9 genes were significantly up-regulated in iPSCs and ESCs co-cultured with GCs in comparison with cells that were not co-cultured. Thus, here we demonstrated an available method to differentiate rat iPSCs and ESCs into GC-like cells in vitro for the possible cell therapy of POF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Different Concentrations of Forskolin Along with Mature Granulosa Cell Co-Culturing on Mouse Embryonic Stem Cell Differentiation into Germ-Like Cells

Background: Germ cell development processes are influenced by soluble factors and intercellular signaling events between them and the neighboring somatic cells. More insight into the molecular biology of the germ cell development from embryonic stem (ES) cells and investigation of appropriate factors, specifically those targeting differentiation process, is of great importance. In this study, w...

متن کامل

I-54: New Models for Human and Mouse Genetic

The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Harvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells

In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

A Novel in vitro Co-culture Systems on Differentiation of Embryonic Stem Cells into Oocyte-like Cells in an in vivo Manner

Background:Differentiation of Embryonic Stem Cells into Oocyte-like cells in vitro is challenging. Successful derivation of oocyte from stem cells can provide an alternative source for curing ovogenesis problems. The current study aims to demonstrate a new protocol with two different types of media for differentiating embryonic stem cells (ESCs) into oocyte-like cells ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica et biophysica Sinica

دوره 45 4  شماره 

صفحات  -

تاریخ انتشار 2013